(12) 公 開 特 許 公 報(A)

(19) 日本国特許庁(JP)

特開2007-87977 (P2007-87977A)

(43) 公開日 平成19年4月5日(2007.4.5)

(11)特許出願公開番号

(51) Int.Cl.			FΙ			テーマコード (参考)
HO5K	9/00	(2006.01)	H O 5 K	9/00	М	4 F 1 O O
B32B	7/02	(2006.01)	B 3 2 B	7/02	104	5 E 3 2 1

審査請求 未請求 請求項の数 7 OL (全 10 頁)

(21) 出願番号 (22) 出願日	特願2005-271200 (P2005-271200) 平成17年9月16日 (2005.9.16)	(71) 出願人	592254526 学校法人五島育英会 東京都渋谷区道玄坂1丁目10番7号
		(74)代理人	100095407
			弁理士 木村 満
		(72)発明者	岡野 好伸
			東京都世田谷区玉堤1丁目28番1号 武
			蔵工業大学内
		(72)発明者	安井 裕史
			東京都世田谷区玉堤1丁目28番1号 武
			蔵工業大学内
		F ターム (参	考) 4F100 AB10 AB17 AB31 AK12 AR00A
			AROOB BAO3 BAO7 DC11C DC21C
			DJO1 GB41 JD14B JG01A JG01C
			JG04B JN06A
			5E321 AA44 BB24 BB25 GG11

(54) 【発明の名称】 電波吸収体

(57)【要約】

【課題】 多周波の周波数帯域の電波を吸収できる電場 吸収体を提供する。

【解決手段】 導電体から構成された導体箔20と、抵 抗体から構成された電波吸収材21との間に、これらと 対向する中間層22を設けている。中間層22に、導電 体で形成され、中央部には導体箔20から電波吸収材2 1側に貫通した孔が形成された中間膜22aをマトリク ス状に配置するとともに、中間膜22aの孔の位置に、 導体で構成された中間膜22bを配置している。このよ うにすると、中間層22が1つであっても、例えば3箇 所の周波数帯域の電波を吸収することができ、反射を抑 制することができる。

【選択図】 図1

【特許請求の範囲】

【請求項1】

導電体から構成された反射膜と、

抵抗体から構成されて前記反射膜に対峙する吸収材と、

前記反射膜と前記吸収材との間に位置して該反射膜及び吸収材に対向する中間層と、

導電体で形成されて前記中間層に配置され、前記反射膜及び吸収材に対向すると共に、

中央部には該反射膜側から吸収材側に貫通した孔が形成された第1の中間膜と、

導電体で形成され、前記中間層の前記第1の中間膜の前記孔の位置に配置されて、前記 反射膜及び吸収材に対向する第2の中間膜と、

を備えることを特徴とする電波吸収体。

【請求項2】

前記第1の中間膜の前記孔の位置に配置された前記第2の中間膜の中央部には前記反射 膜側から前記吸収材側に貫通した孔が形成されていることを特徴とする請求項1に記載の 電波吸収体。

【 請 求 項 3 】

前記第1の中間膜の前記孔の位置に配置された前記第2の中間膜は、複数であることを特徴とする請求項1又は2に記載の電波吸収体。

【請求項4】

前記第1の中間膜の前記孔の位置には、外径の異なる複数の前記第2の中間膜が配置され、

20

10

前記各第2の中間膜の中央部には前記反射膜側から前記吸収材側に貫通した孔がそれぞれ形成され、外径の小さい第2の中間膜が外径の大きな第2の中間膜の孔の位置に順次配置されていることを特徴とする請求項1又は2に記載の電波吸収体。

【請求項5】

導電体で形成され、前記外径が最小の第2の中間膜の孔の位置に配置され、前記反射膜 及び吸収材に対向する第3の中間膜を備えることを特徴とする請求項4に記載の電波吸収 体。

【請求項6】

前記第1の中間膜と前記第2の中間膜とから構成されるパターンが、前記中間層にマト リクス状に配置されていることを特徴とする請求項1乃至4のいずれか1項に記載の電波 30 吸収体。

【請求項7】

前記第1の中間膜と前記第2の中間膜と前記第3の中間膜から構成されるパターンが、 前記中間層にマトリクス状に配置されていることを特徴とする請求項5に記載の電波吸収 体。

【発明の詳細な説明】

- 【技術分野】
- $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$

本発明は、電波吸収体に関する。

【背景技術】

[0002]

オフィスや工場等において、情報交換に無線LAN(Local Area Network)が使用されている。しかし、無線LANを単純に導入しただけでは、電磁波が外部に漏れて機密情報が外部に漏洩したり、電磁波がオフィスや工場の壁・天井等で反射することにより、空間内に反射波が減衰せずに残存して、通信環境を悪化させ、符号誤り率が高くなったり、情報伝達レートが低下したりする場合がある。

上記問題点に対応するために、1/4型電波吸収体や、特許文献1に示された多周波 帯対応電波吸収体が開発されている。

【特許文献1】特開2004 - 140194号公報

50

40

【0004】

1 / 4 型電波吸収体は、無線通信で使用する電磁波を吸収するものであり、金属箔と 、その金属に1 / 4 (は吸収対象電磁波の波長)の間隔を置いて対向した抵抗膜で構 成されている。抵抗膜は、電気抵抗体を塗布したフィルムまたは布で形成されている。 【 0 0 0 5 】

特許文献1の多周波帯対応電波吸収体は、図13に示すように、方形の導体箔13と、 導体箔13に対向して配置された方形の抵抗被膜15と、導体箔13と抵抗被膜15の間 に配置された導体層17とを備えている。

抵抗被膜15は、導体箔13とほぼ等しいサイズで、金属の酸化物を塗布したフィルム 又は布等から構成される。導体層17は、複数の導体膜17aがマトリクス状に配置させ 10 て構成される。各導体膜17aは、導体箔13と同様、電波の完全反射体から構成される

【発明の開示】

【発明が解決しようとする課題】

[0006]

従来の1/4 型電波吸収体は、特定の周波数の電磁波を吸収させることが可能である。ところが、現在の無線LAN等の通信では、2.4GHz帯(= 125mm)と5.2GHz帯(= 57.7mm)とが利用されている。従来の1/4 型電波吸収体は、このような環境下では、どちらか一方の周波数帯の電波を吸収することしかできず、周波数別に複数の電波吸収体を用意しなければならなかった。

これに対し、特許文献1の多周波帯対応電波吸収体は、導体箔13と電波吸収材15と の間に、導体層17を設けることにより、吸収する電磁波の周波数帯を増加させて、2. 4GHz帯と5.2GHz帯の両方の帯域の電磁波を吸収することができる。導体箔13 と抵抗被膜15との間の導体層17の数を増加させ、導体層17の導体膜17aのサイズ や配置を各層毎に異ならせることにより、吸収する電磁波の帯域数を増加させることきが できる。

[0008]

しかしながら、吸収する電磁波の帯域数が増加すると、導体膜17aを配置した導体層 17の数が増えることになり、電波吸収体の厚みが制約されたなかでは実現できないこと 30 があった。また、電波吸収体の縦×横のサイズが固定された状態で、異なったサイズの導 体膜17aを規則的に配置することも困難であった。

[0009]

本発明は、構造が簡素であると共に、容易に電磁波の多数の帯域を吸収できる電波吸収体を実現することを目的とする。

【課題を解決するための手段】

上記目的を達成するために、本発明の観点に係る電波吸収体は、

導電体から構成された反射膜と、

抵抗体から構成されて前記反射膜に対峙する吸収材と、

前記反射膜と前記吸収材との間に位置して該反射膜及び吸収材に対向する中間層と、 導電体で形成されて前記中間層に配置され、前記反射膜及び吸収材に対向すると共に、

中央部には該反射膜側から吸収材側に貫通した孔が形成された第1の中間膜と、 導電体で形成され、前記中間層の前記第1の中間膜の前記孔の位置に配置されて、前記 反射膜及び吸収材に対向する第2の中間膜と、

を備えることを特徴とする。

[0011]

尚、前記第1の中間膜の前記孔の位置に配置された前記第2の中間膜の中央部には前記 反射膜側から前記吸収材側に貫通した孔が形成されていてもよい。

【0012】

また、前記第1の中間膜の前記孔の位置に配置された前記第2の中間膜は、複数であってもよい。

【0013】

また、前記第1の中間膜の前記孔の位置には、外径の異なる複数の前記第2の中間膜が 配置され、

前記各第2の中間膜の中央部には前記反射膜側から前記吸収材側に貫通した孔がそれぞれ形成され、外径の小さい第2の中間膜が外径の大きな第2の中間膜の孔の位置に順次配置されてもよい。この場合、導電体で形成され、前記外径が最小の第2の中間膜の孔の位置に配置され、前記反射膜及び吸収材に対向する第3の中間膜を備えてもよい。

 $\begin{bmatrix} 0 & 0 & 1 & 4 \end{bmatrix}$

また、前記第1の中間膜と前記第2の中間膜とから構成されるパターンが、前記中間層 にマトリクス状に配置されもよい。

【0015】

また、前記第3の中間膜がある場合、前記第1の中間膜と前記第2の中間膜と前記第3 の中間膜から構成されるパターンが、前記中間層にマトリクス状に配置されてもよい。 【発明の効果】

[0016]

本発明によれば、中央部に孔を有する第1の中間膜を中間層に形成し、その第1の中間 膜の持つ孔に第2の中間膜或いは第3の中間膜が配置される。これら第1~第3の中間膜 により、吸収する電磁波の周波数及び帯域を設定することができるので、従来のように、 導体膜(第1~第3の中間膜に相当)を厚み方向に配置しなくても、多数の周波数の電波 を吸収することができる。また、第1~第3の中間膜をマトリクス状に並べる場合でも、 第1の中間膜の外径を基準にして配置すればよい。

【発明を実施するための最良の形態】

【 0 0 1 7 】

以下、図面に基づき、本発明の実施の形態について詳細に説明する。

図1は、本発明の実施形態に係る電波吸収体を示す斜視図であり、図2は、図1の電波吸収体の断面図である。

[0018]

この電波吸収体は、方形の導体箔20と、導体箔20に対峙して配置された方形の電波 30 吸収材21と、導体箔20と電波吸収材21の間に位置し、導体箔20及び電波吸収材2 1と対向する中間層22と、これらの間を充填する樹脂23と、これら全体を被覆するカ バー(図示せず)とにより構成される。

導体 箔 2 0 は、電波の反射膜であり、電波の完全反射体である銅、アルミニウム又はそれらの合金等の金属の膜から形成され、例えば、縦横 3 0 c m から 1 m、厚さ 1 0 0 µ m ~ 1 m m に形成される。

【0019】

電波吸収材21は、電波を減衰させる吸収膜であり、導体箔20とほぼ等しいサイズで、導体箔20から例えば16mm離れた位置に配置され、導電率が55/mの膜から構成されている。電波吸収材21は、例えば、電気抵抗体であるマンガニン等のCu合金膜、貴金属合金膜、炭素膜或いは、Pt・Au・Pb等の貴金属塩又はSnO2 等の金属の酸化物等を塗布したフィルム又は布、から構成されている。電波吸収材21は、さらに、炭素粉を混入した誘電体版で構成することも可能である。

[0020]

中間層22には、一辺の長さが150mmの正方形の複数の中間膜22aが、導体箔20から3mmの位置に、相互に20mmの間隔でマトリクス状に配置させて構成される。 【0021】

樹脂23は、導体箔20と中間層22の間及び中間層22と電波吸収材21との間に充 填された、例えば、誘電率が1.1~1.3の発泡スチロール等の樹脂から構成される。 【0022】

50

40

10

20

中間層22には、一辺の長さが例えば150mmの方形の外形を持ち、中央部に方形の 孔が形成された中間膜22aが、マトリクス状に配置されている。各中間膜22aは、導 体箔20と同様、電波の完全反射体である銅、アルミニウム又それらの合金等の金属から 構成され、導体箔20及び電波吸収材21に対向している。 【0023】

中間層22の各中間膜22aの孔の位置には、方形の外形を有する中間膜22bがそれ ぞれ配置されている。各中間膜22bは、導体箔20と同様、電波の完全反射体である銅 、アルミニウム又それらの合金等の金属から構成され、導体箔20及び電波吸収材21に 対向している。

次に、この電波吸収体の製造方法を図3(a)~(c)を参照して説明する。 まず、厚さ3mmで、誘電率が1.1~1.3の発泡スチロール板23aを用意する。 図3(a)に示すように、発泡スチロール板23aの一主面に、この発泡スチロール板2 3 aとほぼ同一サイズの導体箔20を接着する。次に、発泡スチロール板23aの他主面 に、図3(b)に示すように、一辺が150mmの正方形の中間膜22aを20mmの間 隔で配置・接着する。さらに、発泡スチロール板23aの他主面の中間膜22aの孔の位 置に、中間膜22bを配置・接着する。

【0024】

ー方で、発泡スチロール板23aとほぼ同一のサイズ・材質で、厚さが13mmの発泡 スチロール板23bを用意する。この発砲スチロール板23bの一主面に、この電波吸収 材21を接着する。

【0025】

20

30

10

次に、発泡スチロール板23aの他主面と発泡スチロール板23bの他主面とを、図3 (c)に示すように接着する。

その後、必要に応じて、全体を樹脂などで構成された保護膜でカバーする。

[0026]

ここで、中間層に配置される中間膜の機能を、図4~図9を参照しつつ、説明する。 導体箔20と電波吸収材21との間の中間層22に中間膜22aを配置することにより 、異なる2つ周波数帯域の電波を吸収して反射が抑制される。

図4に示す各中間膜22aの一辺の長さaを150mmとし、各中間膜22aの孔の一辺の長さS1を0mm(即ち、中間膜22aの孔がない状態)とし、電波吸収材21側から電波を入射した場合の反射損失(Reflection loss)を評価すると、入射電磁波の周波数(Frequency)に対して図5の特性カーブT1が得られる。尚、反射損失は、入射電界強度に対する反射電界強度の割合を示し、「反射損失」=20× 1n(入射電界強度/反射電界強度)として計算されている。

特性カーブ T 1 は、周波数が 2 . 4 G H z 近辺の周波数帯域と 4 . 2 G H z 近辺の周波 数帯域の電波が吸収されて反射が抑制されることを示している。

【0027】

各中間膜22aも孔の一辺の長さS1を16mm、20mm、24mmと変化させて、 反射損失を評価すると、特性T2,T3,T4がそれぞれ対応して得られる。特性T1, T2,T3,T4から明らかなように、中間膜22aの孔を大きくすることにより、吸収 40 される電波の周波数帯域が低周波側にシフトする。

【0028】

次に、各中間膜22aの中央部の孔の位置に、中間膜22bを配置することによる反射 損失の変化を評価する。

図 6 には、中間膜 2 2 a の一辺の長さ a と、中間膜 2 2 a の孔の一辺の長さ S 1 と、中間膜 2 2 b の一辺の長さ S 2 とが示されている。中間膜 2 2 a の一辺の長さ a と中間膜 2 a の孔の一辺の長さ S 1 とを固定し、中間膜 2 2 b の一辺の長さ S 2 を、 0 mm(中間膜 2 2 b がない状態に相当)、 1 4 mm、 1 6 mm、 1 8 mmと変化させて反射損失を調べると、 S 1 の 0 mm、 1 4 mm、 1 6 mm、 1 8 mmに対応して図 7 の反射損失の特性 T 5、 T 6、 T 7、 T 8 が得られる。図 7 から明らかなように、中間膜 2 2 b を設けるこ

10

20

とによって、吸収される電波の周波数帯域の数が3に増加したことがわかる。 【0029】

次に、各中間膜22aの中央部の孔の位置に配置された中間膜22bに。さらに孔を形成した場合の反射損失の変化を評価する。

図 8 には、中間膜 2 2 a の一辺の長さ a 1 と、中間膜 2 2 a の孔の一辺の長さ S 1 と、 中間膜 2 2 b の一辺の長さ S 2 と、中間膜 2 2 b に形成した方形の孔の一辺の長さ a 2 が 示されている。中間膜 2 2 a の一辺の長さ a 1 と中間膜 2 2 a の孔の一辺の長さ S 1 と中 間膜 2 2 b の一辺の長さ S 2 とを固定し、中間膜 2 2

bの孔の一辺の長さa2を、0mm(中間膜22bの孔がない状態に相当)、12mm、 14mm、16mmと変化させて反射損失を調べると、a2の0mm、12mm、14m m、16mmに対応して図9の反射損失の特性T9、T10、T11、T12が得られる 。図9から明らかなように、中間膜22bに孔を設けることによって、中間膜22bを配 置することによって増加した吸収される電波の周波数帯域が、シフトすることがわかる。 【0030】

以上により、中間層22に中間膜22aと中間膜22bを備える本実施形態の電波吸収体は、電波を吸収する周波数帯域を3つ持つと共に、中間膜22aと中間膜22bのディメンジョンにより、電波を吸収する周波数帯域の周波数も調整可能であることがわかる。 【0031】

さらに、中間膜22bに孔を形成し、その孔に別の中間膜を形成することを繰り返すことにより、電波を吸収する周波数帯域の数を増加させることもわかる。

従って、中間層22の数を増加させなくても、電波を吸収する周波数帯域の数を増加さ せることができ、構造が単純化できる。また、必要以上に電波吸収体の厚みを厚くする必 要がない。また、中間膜22a及び中間膜22bをマトリクス状に規則的に配置する場合 にも、中間膜22bは中間膜22aの孔に配置するだけなので、中間膜22aのサイズに のみ着目して規則的にマトリクス状に配置する設計をすれば、本実施形態の電波吸収体を 実現できる。即ち、設計も容易である。

尚、本発明は、上記実施形態に限定されず、種々の変形が可能である。その変形例とし は、例えば次のようなものがある。

(1)導体箔20と電波吸収材21との間隔、導体箔20と中間層22との間隔などは 30 、吸収対象の周波数帯域及び樹脂23の誘電率等に応じて任意に変更可能である。同様に 、中間膜22a、中間膜22bのサイズは、吸収対象となる周波数帯や希望する吸収特性 等に応じて適宜変更可能である。

[0033]

(2)図10(a),(b)は、変形例を示す図であり、中間層22が示されている。 中間層22にマトリクス状に配置される各中間膜22a,22bの形状は、方形ばかり でなく、任意の形状ものが選択でき、例えば図10(a)のように、三角形でもよく、図 10(b)のように円形でもよく、さらに、これらを組み合わせてもよい。

【 0 0 3 4 】

(3)図11は、中間層22に配置される中間膜22aと中間膜22bの変形例を示す 40 図である。

中間膜22aは、方形や閉路に形成しなくてもよく、例えば図11に示すように、渦巻き状にしてもよい。中間膜22bも方形や閉路を構成しなくてもよく、図11に示すように、渦巻き状にしてもよい。

[0035]

(4) 中間膜22a,22bを導体のメッシュで構成してもよい。

【0036】

(5) 図12は、中間層22に配置される中間膜22aと中間膜22bの変形例を示す 図である。

中間膜22aの孔に配置する中間膜22bのサイズが小さい場合には、図12に示すよ 50

うに、中間膜22bをマトリクス状に配置してもよい。この場合、反射損失の特性が、中 間層22で均等化される等の効果が期待できる。 【図面の簡単な説明】 [0037]【図1】本発明の実施形態に係る電波吸収体を示す斜視図である。 【図2】図1の電波吸収体の断面図である。 【図3】電波吸収体の製造方法の説明図である。 【図4】中間膜のディメンジョンの説明図である。 【図5】反射損失特性を示す図である。 【図6】中間膜のディメンジョンの説明図である。 【図7】反射損失特性を示す図である。 【図8】中間膜のディメンジョンの説明図である。 【図9】反射損失特性を示す図である。 【図10】中間層の変形例を示す図である。 【図11】中間層に配置される各中間膜の変形例を示す図である。 【図12】中間層に配置される各中間膜の変形例を示す図である。 【図13】従来の多周波帯対応電波吸収体を示す斜視図である。 【符号の説明】 [0038] 2 0 導体 箔 2 1 電波吸収材 22 中間層 22a,22b 中間膜

23 樹脂

【図1】

10

20

(a)

22a

【図13】

